Generalized Harnack inequality for semilinear elliptic equations
نویسندگان
چکیده
منابع مشابه
Boundary Harnack principle and elliptic Harnack inequality
We prove a scale-invariant boundary Harnack principle for inner uniform domains over a large family of Dirichlet spaces. A novel feature of our work is that our assumptions are robust to time changes of the corresponding diffusions. In particular, we do not assume volume doubling property for the symmetric measure.
متن کاملSemilinear Elliptic Equations with Generalized Cubic Nonlinearities
A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.
متن کاملStability of Elliptic Harnack inequality
We prove that the elliptic Harnack inequality (on a manifold, graph, or suitably regular metric measure space) is stable under bounded perturbations, as well as rough isometries.
متن کاملSome remarks on the elliptic Harnack inequality
In this note we give three short results concerning the elliptic Harnack inequality (EHI), in the context of random walks on graphs. The first is that the EHI implies polynomial growth of the number of points in balls, and the second that the EHI is equivalent to an annulus type Harnack inequality for Green’s functions. The third result uses the lamplighter group to give a counterexample concer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2016
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2016.03.015